USB Multifunction Devices

Features

- 16-bit high-speed USB devices
- Acquisition rates ranging from 250 kS/s to 500 kS/s
- 8 differential (DIFF) or 16 singleended (SE) analog inputs (softwareselectable)
- Up to 2 analog outputs
- 8 digital I/O lines
- Two 32-bit counter input channels
- One timer output channel

Software

- TracerDAQ® software included for acquiring and displaying data and generating signals
- Universal Library includes support for Visual Studio® and Visual Studio® .NET, including examples for Visual C++®, Visual C#®, Visual Basic®, and Visual Basic® .NET
- DAQFlex open-source software framework; compatible with Windows® 7/Vista®/XP SP2, 32-bit or 64-bit, Linux®, and Mac® platforms
- Comprehensive drivers for DASYLab® and NI LabVIEW™
- InstaCal software utility for installing, calibrating, and testing
- Supported Operating Systems: Windows® 7/Vista®/XP SP2, 32-bit or 64-bit; Linux®, and Mac®

Overview

USB-1608G Series devices are low-cost, high-speed, analog and digital I/O USB devices. All of these devices offer up to eight DIFF or 16 SE analog inputs, up to eight digital I/O channels, two counter inputs, and one timer output.

The USB-1608GX-2AO offers two, 16-bit analog output channels with DAC rates up to 500 kS/s.

Everything you need to begin acquiring, viewing, and storing data is included with each USB-1608G Series device, including comprehensive software support.

All USB-1608G Series devices offer 16 singled-ended or eight differential analog inputs, 8 digital I/O, and one counter input. The USB-1608GX-2AO (shown here) also offers two analog outputs.

USB-1608G Series Selection Chart					
Model	Analog Inputs	Sampling Rate	Analog Outputs	Digital I/O	Counters
USB-1608G	16 SE/8 DIFF	Up to 250 kS/s	0	8	2
USB-1608GX	16 SE/8 DIFF	Up to 500 kS/s	0	8	2
USB-1608GX-2AO	16 SE/8 DIFF	Up to 500 kS/s	2	8	2

Analog Input

USB-1608G Series devices provide 16-bit analog inputs that are software-selectable as 16 SE or eight DIFF inputs. These devices also support input ranges of ± 10 V, ± 5 V, ± 2 V, and ± 1 V that are software-selectable per channel.

Analog Output (USB-1608GX-2AO only)

The USB-1608GX-2AO has two 16-bit analog outputs. Both outputs can be updated at a rate of 250 kS/s per channel; one output can be updated at a rate of 500 kS/s. The output range is fixed at ± 10 V. The outputs default to 0 V when the host PC is shut down or suspended, or when a reset command is issued to the device.

Trigger Input

USB-1608G Series devices have an external digital trigger input. The trigger mode is software-selectable for edge- or level-sensitive mode.

You can configure edge-sensitive mode for either rising or falling edge. In level-sensitive mod, you can configure for either high or low level. The default setting at power up is edge-sensitive, rising edge.

Retrigger mode: In retrigger mode, you can set up repetitive analog input trigger events. The trigger is automatically re-armed after it is activated. Use software to set the A/D trigger count (the number of samples you want per trigger).

Measurement Computing (508) 946-5100 1 info@mccdaq.com mccdaq.com

General Information & Specifications

Digital I/O

Eight bidirectional digital I/O connections are included with USB-1608G Series devices. Each digital channel is individually configurable for input or output. The digital I/O terminals can detect the state of any TTL-level input. You can configure for pull-up (+5 V) or pull-down (0 V) through a jumper.

Counter Input

Each USB-1608G Series device includes two 32-bit event counters for counting TTL pulses. The counters accept frequency inputs of up to 20 MHz.

Timer Output

USB-1608G Series devices have a PWM timer output that can generate a pulse output with a programmable frequency in the range of 0.0149 Hz to 32 MHz. The timer output parameters are software-selectable.

External Clock I/O

USB-1608G Series devices provide one external clock input and one external clock output for the analog inputs.

The USB-1608GX-2AO also has one external clock input and one external clock output for the analog outputs.

Software

Each USB-1608G Series device includes TracerDAQ, an out-of-the-box application that generates, acquires, analyzes, displays, and exports data within seconds of installing Measurement Computing data acquisition hardware. TracerDAQ includes a Strip Chart, Oscilloscope, Function Generator, and Rate Generator, all of which are accessed through a common, easy-to-use menu page.

Also included is a complete set of drivers and detailed example programs for the most popular programming languages and software packages. Driver support includes Universal Library programming libraries for Microsoft® Visual Studio® programming languages, and other languages, DASYLab® support, and ULx for NI LabVIEW®.

DAQFlex

For DAQ programming in virtually any OS, USB-1608G Series devices include DAQFlex, a framework that combines a small footprint driver with a message-based command protocol. The simplicity of the driver is enabled with a message-based protocol that offers an efficient yet powerful interface to DAQ devices and a common command set that simplifies application development.

Specifications

Analog Input

A/D Converter Type: Successive approximation

ADC Resolution: 16 bits

Number of Channels: 8 DIFF, 16 SE; software-selectable

Input Voltage Range: ± 10 V, ± 5 V, ± 2 V, ± 1 V; software-selectable per channel **Absolute Maximum Input Voltage**

CHx Relative to AGND: ±25 V max (power on); ±15 V max (power off)

Input Impedance: 1 G Ω (power on); 820 Ω (power off)

Input Bias Current: ±10 nA

Input Bandwidth

All Input Ranges, Small Signal (-3 dB)

USB-1608G: 750 kHz

USB-1608GX/1608GX-2AO: 870 kHz

Input Capacitance: 60 pf

Maximum Working Voltage (Signal + Common Mode): ±10.2 V max relative to AGND

Common Mode Rejection Ratio

f_{IN} = 60 Hz, All Input Ranges: 86 dB

Crosstalk

Adjacent Differential Mode Channels, DC to 100 kHz: -75 dB

Input Coupling: DC

Sampling Rate (Software-Selectable)

USB-1608G: 0.0149 Hz to 250 kHz

USB-1608GX/1608GX-2AO: 0.0149 Hz to 500 kHz

Trigger Source: TRIG (refer to External Trigger section)

Sample Clock Source: Internal A/D clock or external A/D clock (AICKI terminal)

Burst Mode: Software-selectable using the internal A/D clock: always enabled

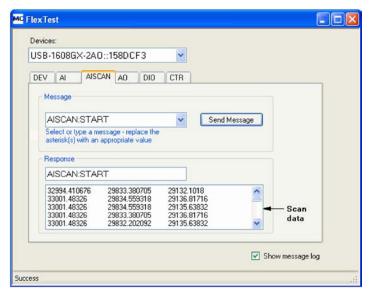
Burst Mode: Software-selectable using the internal A/D clock; always enabled when using the external clock (AICKI terminal)

USB-1608G: 4 μs

USB-1608GX/1608GX-2AO: 2 µs

Throughput

Software Paced: 33 to 4000 S/s typ, system dependent


Hardware Paced

USB-1608G: 250 kS/s max

USB-1608GX/1608GX-2AO: 500 kS/s max

Channel Gain Queue: Up to 16 elements; software-selectable range for each

Warm-up Time:15 minutes min

FlexTest is an interactive GUI-based utility that demonstrates how to communicate with a device using the DAQFlex communication protocol and software.

Specifications

Analog Input DC Voltage Measurement All Values are (±)						
Range	Gain error (% of Reading)	Offset Error (μV)	INL Error (% of Range)	Absolute accuracy at Full Scale (μV)	Gain Temperature coefficient (% reading/°C)	Offset Tempera- ture Coefficient (µV/°C)
±10 V	0.024	915	0.0076	4075	0.0014	47
±5 V	0.024	686	0.0076	2266	0.0014	24
±2 V	0.024	336	0.0076	968	0.0014	10
±1 V	0.024	245	0.0076	561	0.0014	5

Noise Performance*			
Range	Counts	LSBrms	
±10 V	6	0.91	
±5 V	6	0.91	
±2 V	7	1.06	
±1 V	9	1.36	

^{*} For the peak-to-peak noise distribution test, a differential input channel is connected to AGND at the input terminal block, and 32,000 samples are acquired at the maximum rate available at each setting.

Settling Time**				
	USB-1608G			
Range	4 μS settling accuracy (% FSR)	6 μS settling accuracy (% FSR)	10 µS settling accuracy (% FSR)	
±10 V	0.0061	0.0031	0.0015	
±5 V	0.0061	0.0031	0.0015	
±2 V	0.0061	0.0031	0.0015	
±1 V	0.0061	0.0031	0.0015	
USB-1608GX/1608GX-2AO				
Range	2 μS settling accuracy (% FSR)	4 μS settling accuracy (% FSR)	9 µS settling accuracy (% FSR)	
±10 V	0.1251	0.0031	0.0015	
±5 V	0.0687	0.0031	0.0015	
±2 V	0.0687	0.0031	0.0015	

^{**} Settling time is defined as the expected accuracy after one conversion when switching from a channel with a DC input at one extreme of full scale to another channel with a DC input at the other extreme of full scale. Both input channels are configured for the same input range.

0.0031

0.0015

Analog Output (USB-1608GX-2AO only)

0.0687

Number of Channels: 2 (leave unused AOUTx output channels disconnected)

Resolution: 16 bits

Output Range: ±10 V (calibrated)

Output Transient

Host computer is reset, powered on, suspended, or a reset command is issued to the device.

Duration: 500 μs Amplitude: 2 V pk-pk Powered Off

Duration: 10 ms Amplitude: 7 V peak

Differential Non-Linearity: ±0.25 LSB typ; ±1 LSB max

Output Current AOUTx: ±3.5 mA max Output Short-Circuit Protection

AOUTx Connected to AGND: Unlimited duration

Analog Output Absolute Accuracy			
Range	Absolute accuracy (± LSB)		
±10 V	16.0		

Analog Output Calibrated Absolute Accuracy Components				
Range	% of Reading	Offset (±mV)	Offset Tempco	Gain Tempco (ppm of Range/°C)
±10 V	±0.0183	1.831	12.7	13

Analog Output Relative Accuracy			
Range	Relative Accuracy (INL)		
±10 V	4.0 typ		

Output Coupling: DC

Power On and Reset State

DACs Cleared to Zero-Scale: $0\ V$, $\pm 50\ mV$ (AOUTx defaults to $0\ V$ whenever the host computer is reset, powered on, suspended, or a reset command is issued to the device)

Output Noise: 30 µVrms

Sample Clock Source: Internal D/A clock or external D/A clock (AOCKI terminal)

Output Update Rate: 500 kHz/number of channels in scan Settling Time

To Rated Accuracy, 10 V Step: 40 μs Slew Rate: 9 V/μs

Throughput

Software Paced: 33 S/s to 4000 S/s typ, system-dependent Hardware Pacedl: 500 kS/s max, system-dependent

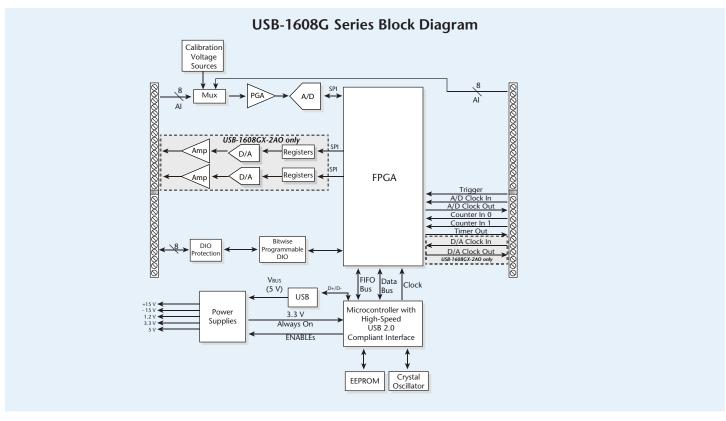
Analog Input/Output Calibration

Recommended Warm-Up Time: 15 minutes min Calibration Method: Self-calibration (firmware) Calibration Interval: 1 year (factory calibration)

AI Calibration Reference

+5 V, ±2.5 mV max (actual measured values stored in EEPROM)

Tempco: 5 ppm/°C max


Long Term Stability: 15 ppm/1000 hours

AOUTx Calibration Procedure (USB-1608GX-2AO Only)

The analog output terminals are internally routed to the analog input circuit. For best calibration results, disconnect any AOUTx connections at the terminal block prior to performing AOUT calibration.

Specifications

Digital Input/Output

Digital Type: CMOS

Number of I/O: 8

Configuration: Each bit may be configured as input (power on default) or output **Pull-Up Configuration:** The port has 47 k Ω resistors configurable as pull-ups or pull-downs (default) via internal jumper (W1).

Digital I/O Transfer Rate (System-Paced): 33 to 8000 port reads/writes or single bit reads/writes per second typ, system dependent.

Input High Voltage: 2.0 V min, 5.5 V absolute max

Input Low Voltage: 0.8 V max, -0.5 V absolute min, 0 V recommended min Output High Voltage: 4.4 V min (IOH = $-50 \mu\text{A}$), 3.76 V min (IOH = -2.5 mA) Output Low Voltage: 0.1 V max (IOL = $50 \mu\text{A}$), 0.44 V max (IOL = 2.5 mA) Output Current: ±2.5 mA max

External Trigger

Trigger Source: TRIG input

Trigger Mode: Software configurable for edge or level sensitive, rising or falling edge, high or low level. Power on default is edge sensitive, rising edge.

Trigger Latency: 1 µs + 1 clock cycle max

Trigger Pulse Width: 100 ns min

Input Type: Schmitt trigger, 33 Ω series resistor and 49.9 k Ω pull-down to ground

Schmitt Trigger Hysteresis: 0.4 V to 1.2 V

Input High Voltage: 2.2 V min, 5.5 V absolute max

Input Low Voltage: 1.5 V max, -0.5 V absolute min, 0 V recommended min

External Clock Input/Output

Terminal Names

AICKI, AICKO,

AOCKI, AOCKO (USB-1608GX-2AO only)

Terminal Types

AxCKI: Input, active on rising edge

AxCKO: Output, power on default is 0 V, active on rising edge

Terminal Descriptions

AxCKI: Receives sampling clock from external source

AxCKO: Outputs the internal sampling clock (D/A or A/D clock) or the pulse generated from AxCKI when in external clock mode.

Input Clock Rate

USB-1608G: 250 kHz max

USB-1608GX/1608GX-2AO: 500 kHz max

Clock Pulse Width

AxCKI: 400 ns min

AxCKO: 400 ns min

Input Type: Schmitt trigger, 33 Ω series resistor, 47 k Ω pull-down to ground

Schmitt Trigger Hysteresis: 0.4 V to 1.2 V

Input High Voltage: 2.2 V min, 5.5 V absolute max

Input Low Voltage: 1.5 V max, -0.5 V absolute min, 0 V recommended min Output High Voltage: $4.4 \text{ V} \text{ min (IOH} = -50 \,\mu\text{A}), 3.76 \text{ V} \text{ min (IOH} = -2.5 \,\text{mA})$ Output Low Voltage: 0.1 V max (IOL = 50 µA), 0.44 V max (IOL = 2.5 mA)

Output Current: ±2.5 mA max

Counter

Terminal Names: CTR0, CTR1

Number of Channels: 2 channels

Resolution: 32-bit

Counter Type: Event counter

Input Type: Schmitt trigger, 33 Ω series resistor, 47 k Ω pull-down to ground Input Source:

CTR0 (terminal 52) CTR1 (terminal 51)

Counter Read/Writes Rates (Software-Paced): 33 to 8000 reads/writes per sec-

ond typ, system dependent

Input High Voltage: 2.2 V min, 5.5 V max Input Low Voltage: 1.5 V max, -0.5 V min Schmitt Trigger Hysteresis: 0.4 V min, 1.2 V max

Input Frequency: 20 MHz, max High Pulse Width: 25 ns, min Low Pulse Width: 25 ns, min

Specifications & Ordering

TimerOutput

Timer Terminal Name: TMR

Timer Type: PWM output with count, period, delay, and pulse width registers Output Value: Default state is idle low with pulses high, software-selectable output invert

Internal Clock Frequency: 64 MHz Register Widths: 32-bit

High Pulse Width: 15.625 ns min Low Pulse Width: 15.625 ns min

Output High Voltage: 4.4 V min (IOH = -50 μ A), 3.76 V min (IOH = -2.5 mA) Output Low Voltage: 0.1 V max (IOL = 50 μ A), 0.44 V max (IOL = 2.5 mA)

Output Current: ±2.5 mA max

Memory

Data FIFO: 4 kS analog input/2 kS analog output

Non-Volatile Memory: 32 KB (28 KB firmware storage, 4 KB calibration/user data)

Power

Supply Current

This is the total quiescent current requirement for the device that includes up to 10 mA for the Status LED. This does not include any potential loading of the digital I/O bits, +5 V terminal, or the AOUTx outputs (USB-1608GX-2AO only).

Quiescent Current

USB-1608G/1608GX: 230 mA USB-1608GX-2AO: 260 mA

+5 V User Output Voltage Range (Available at Terminal 42): $4.9~\mathrm{V}$ min to $5.1~\mathrm{V}$ max

+5 V User Output Current (Available at Terminal 42): 10 mA max

Environmental

Operating Temperature Range: 0 °C to 55 °C max Storage Temperature Range: -40 °C to 85 °C max Humidity: 0% to 90% non-condensing max

Mechanical

Dimensions (L × W × H): $127 \times 89.9 \times 35.6$ mm ($5.00 \times 3.53 \times 1.40$ in.) User Connection Length: 3 m (9.84 ft) max

Ordering Information

16-channel, 250 kS/s device with two 32-bit counter inputs, one timer output, eight DIO lines, and USB cable

16-channel, 500 kS/s device with two 32-bit counter inputs, one timer output, eight DIO lines, and USB cable

16-channel, 500 kS/s device with two analog outputs, two 32-bit counter inputs, one timer output, eight DIO lines, and USB cable

USB-1608GX-2AO

Part No.

USB-1608G

USB-1608GX

Software

Icon-based data acquisition, graphics, control, and analysis software Out-of-the-box virtual instrument suite with

strip chart, oscilloscope, function generator, and rate generator – professional version

TracerDAQ Pro

DASYLab

Measurement Computing (508) 946-5100 5 info@mccdaq.com mccdaq.com