

# Handyscope HS5

The world's best 500 MHz, 14 bit USB oscilloscope
40 MHz Arbitrary Waveform Generator

**Datasheet** 

































# Oscilloscope / Spectrum analyzer / Multimeter / Data logger

14 bit (0.006 %) resolution (16 bit enhanced resolution)

500 MS/s sampling

250 MHz bandwidth

32 MSamples memory per channel

20 MS/s continuous streaming

0.25 % DC vertical accuracy, 0.1 % typical

1 ppm timebase accuracy

USB powered

# **Arbitrary Waveform Generator**

1  $\mu$ Hz to 40 MHz sine, square, triangular and arbitrary waves

240 MS/s, 14 bit, 64 MSamples arbitrary waves

0 to  $\pm 12$  V output (24  $V_{pp}$ )

1 ppm timebase accuracy

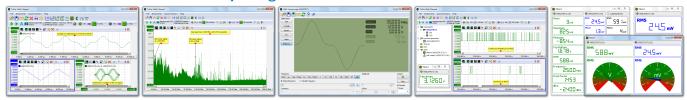
Spurious (non harmonic) <-75 dB

8 ns rise and fall time

# Handyscope HS5, an unbeatable oscilloscope

This Best in class USB oscilloscope features:

- 14 and 16 bit High Resolution USB Oscilloscope, 256 times more amplitude resolution than an 8 bit oscilloscope, with super zoom up to 32 Million samples
- 250 MHz USB Spectrum analyzer
- High Performance Digital Multimeter (DMM)
- Protocol analyzer
- USB Arbitrary Waveform Generator


and provides the best that is available in industry, for a limited budget. The flexibility and quality that the Handyscope HS5 offers is unparalleled by any other oscilloscope in its class.

#### **Models**

The Handyscope HS5 is available in four different models with an extended memory option (XM) and with optional SureConnect connection test and resistance measurement (S).

| Handyscope HS5 model      |                | 540      | 530      | 220      | 110      | 055     |
|---------------------------|----------------|----------|----------|----------|----------|---------|
| Maximum sampling rate     |                | 500 MS/s | 500 MS/s | 200 MS/s | 100 MS/s | 50 MS/s |
| Maximum streaming rate    |                | 20 MS/s  | 20 MS/s  | 10 MS/s  | 5 MS/s   | 2 MS/s  |
| Decord length new channel | standard model | 128 KiS  | 128 KiS  | 128 KiS  | 128 KiS  | 128 KiS |
| Record length per channel | XM option      | 32 MiS   | 32 MiS   | 32 MiS   | 32 MiS   | 32 MiS  |
| Maximum AWG frequency     |                | 40 MHz   | 30 MHz   | 20 MHz   | 10 MHz   | 5 MHz   |
| ANA/C === === ===         | standard model | 256 KiS  | 256 KiS  | 256 KiS  | 256 KiS  | 256 KiS |
| AWG memory                | XM option      | 64 MiS   | 64 MiS   | 64 MiS   | 64 MiS   | 64 MiS  |

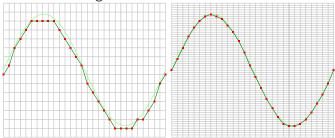
# More instruments in the smallest package.



Containing five instruments, the Handyscope HS5 is the most powerful compact measuring instrument in industry. For a user not always measuring at the same location or one who needs more space at his desk, the Handyscope HS5 is the best instrument. Its compact and robust construction makes the Handyscope HS5 perfect for portable use in combination with a laptop computer.

#### Built-in extremely low distortion USB arbitrary waveform generator

The Handyscope HS5 is the first High Resolution USB oscilloscope with a built-in 40 MHz signal generator. The built in USB Arbitrary Waveform Generator uses the latest techniques on signal synthesis, developed by TiePie engineering, giving the best signal fidelity in its class. An expensive stand-alone Arbitrary Waveform Generator is easily surpassed. With a spurious distortion as low as -85 dB at 100 kHz signal frequency, a very flat amplitude spectrum and a rise time of 8 ns, the created signals approach perfection. Combined with an output voltage of 24  $V_{\rm pp}$ , a resolution of 14 bit at 240 MS/s and a waveform buffer of 64 MSamples, this makes the Handyscope HS5 AWG truly a high quality generator. Standard signal shapes like sine wave, square wave, triangle, pulse, DC and noise are available. When

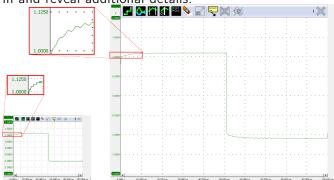

a custom signal shape is required, this can be created in the 64 million samples large memory or by loading a previously measured signal from the oscilloscope.



# High amplitude resolution, 256 times more than a standard oscilloscope

A standalone oscilloscope usually has a low resolution of 8 or 9 bit, combined with a limited display of just 5.7" or 8.5", displaying the measured signals in their actual resolution. Zooming in will then not reveal more details.

The Handyscope HS5 has high resolutions of 14 and 16 bit, making it a truly high precision oscilloscope. With a high resolution, the original signal is sampled much more accurate, the quantization error is much lower. The effect of a higher resolution can be clearly seen in the images below:




To display a signal measured with the Handyscope HS5 High Resolution oscilloscope at the same level of detail as the standalone oscilloscope, the display can be

# Industry's first 1 ppm oscilloscope

The time base of the Handyscope HS5 is 25 to 100 times better than the comparable instruments of the competition. With a time base accuracy of 1 ppm, frequency and timing can be measured very accurately.

256 times larger. Viewing the signals on a 24" monitor immediately gives a very detailed impression of the signal. The smallest deviations are very well visible and because of the high resolution, it is still possible to zoom in and reveal additional details.



Shown are two displays, both showing a measurement of the same signal. The left display size corresponds to a size comparable to a standalone oscilloscope; at 8 bit resolution, zooming will not reveal more details. The right display corresponds to a maximized window on a standard PC screen; at 14 bit resolution, zooming will still reveal more details.

Coupling multiple instruments to a large combined instrument does not affect the time base accuracy, the timing deviation between the coupled instruments is 0 ppm.

### Combining multiple instruments for fully synchronized measuring

The Handyscope HS5 is equipped with a sophisticated synchronization bus, allowing to connect multiple Handyscope HS5's to each other, which then can be used as a combined instrument. One of the connected Handyscope HS5's will act as master, the others as slaves. All instruments will measure at the same sample frequency (0 ppm deviation!) Apart from the synchronization bus there are also a trigger bus and a detection bus system. Multiple Handyscope HS5's can be connected to each other using a coupling cable. The maximum number of instruments is only imited by number available USB ports.

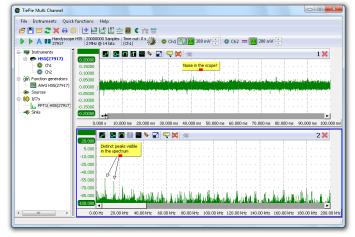
When the Multi Channel software is started, the coupled Handyscope HS5's are identified (each Handyscope HS5 has a unique number) and automatically combined to a larger instrument. Both the synchronization bus and the trigger bus are automatically terminated at both ends with the correct impedance.

Placing terminators is not required by the user. Combining the instruments is fully automatic. This unique possibility to create e.g. a 8 channel instrument is only available with the Handyscope HS5 and no other USB oscilloscope.



# High performance USB digital multimeter

With the high resolution of 16 bits, the Handyscope HS5 can be used as a comprehensive and accurate high performance digital multimeter with good specifications (like e.g. RMS, peak-peak, Max, Min, Mean, Variance, Standard deviation, Frequency, duty cycle, Crest factor, Rise time, Fall time, dBm, etc.). Both numerical and gauge displays are available. The stable and very accurate time base of the Handyscope HS5 of 1ppm make very accurate frequency and time measurements possible. These qualities make an extra multimeter or frequency counter redundant and make the Handyscope HS5 unique in its class.


You can make as many displays as you want, in any size and different layouts.

#### Meter1 Meter3 O HS5(27917).Ch1 O HS5(27917).Cl 24.5 mv 59 1... ∃mv mum 825mv 13. Minimum -854<sub>m</sub>v Meter2 O HS5(27917).Ch O HS5(27917).Ch 1678v 588<sub>mv</sub> 24.5 mv 588<sub>mv</sub> RMS RMS Frequency 2.500 MHz m۷ เ๊ฯ53 -2.400 dBm

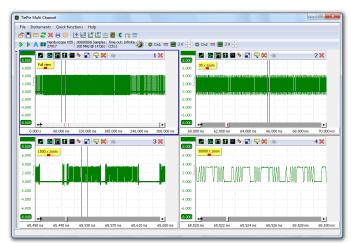
# Troubleshooting in the frequency domain

The Handyscope HS5 definitely brings an end to the idea that spectrum analyzers are expensive, hard to control and difficult to understand. The large flexibility of the spectrum analyzer makes it not just suitable for measuring high frequency signals of transmitters and receivers. A spectrum analyzer displays frequency along the X axis and along the Y axis the magnitude of the signal is displayed. This is called a frequency domain display.

When troubleshooting, usually an oscilloscope is used. But when the disturbance is small in amplitude and contains many frequencies, these signals are badly visible on an oscilloscope. They appear like noise signals. But, when these signals are viewed in the frequency domain, a much better overview is presented of the disturbance signals that are present and which frequencies they contain.



When e.g. measurements are performed on a system that contains switch mode power supplies, the disturbances caused by a power supply are easily detected by measuring in the frequency domain. The switch frequency of the switch mode power supply is measured by holding the probe close to the inductor of the power supply. This unique switch frequency is now known and can be stored in a reference channel. When this frequency is also measured at other locations in the system, the frequency is caused by the power supply. Precautions can be made to suppress the disturbing signal from the switch mode power supply. The suppression can be measured directly by the Handyscope HS5 USB spectrum analyzer. This method of troubleshooting is only possible (and unique for the Handyscope HS5) because the Handyscope HS5 contains:


- 250 MHz bandwidth
- 14 and 16 bit resolution
- 32 Million samples memory
- very fast FFT calculations

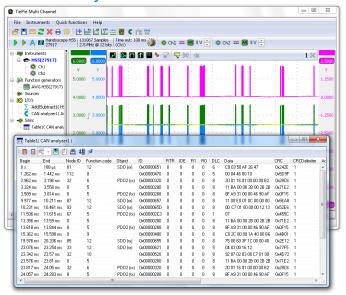
Because the Handyscope HS5 measures a with very high resolution in the frequency domain, disturbances can be detected and analyzed at one tenth of a Hertz accuracy. Up to 16 million frequency components can be displayed in a graph. Because of the high resolution of the Handyscope HS5 (14 and 16 bit resolution and 32 MSamples), small disturbances can be easily detected. When a precaution is made to suppress the disturbance, its effectiveness can immediately be checked with the Handyscope HS5. With the high resolution and the large memory of the Handyscope HS5, a spectrum with a dynamic range of more than 120 dB can be measured. This is unique in its class. With this large dynamic range, distortion measurements can be well performed.

# Mega deep memory of 32 MSamples per channel

When measuring at high sample rates, a long record length is a must, otherwise the acquisition buffer is full before the signal is measured. Where most oscilloscopes have 2.5 kSamples or 100 kSamples memory, the Handyscope HS5 has 32 MSamples memory per channel. This gives the user 300 to 10000 times more memory. The advantage of deep memory is that once-only fast phenomena can be measured accurately or complete serial communication signal blocks like CAN Bus signals can be measured all at once. In the USB spectrum analyzer, the deep memory gives the advantage that a large dynamic range is created which sets troubleshooting in the frequency domain as a new standard.

The unlimited super zoom feature of the Handyscope HS5 allows to zoom in up to one individual sample, no matter what record length was selected.




Shown is a 30 million samples long measurement. The same signal is shown four times in different zooming factors, the lower right graph shows just 0.01 ms of the total 300 ms, a zoom factor of 30000. It still provides enough detail for accurate signal analysis.

# **Sure**Connect connection test and resistance measurement

SureConnect connection test shows immediately whether the probe or clip actually makes electrical contact. No more doubt whether the probe doesn't make contact or there really is no signal. This is e.g. useful when surfaces are oxidized and the probe cannot get a good electrical contact or when back probing connectors in confined places. Simply activate SureConnect and you immediately know whether there is contact.

SureConnect is optionally available on Handyscope HS5. Handyscope HS5 models with SureConnect come with resistance measurement on all channels. Resistances up to 2 MOhm can be measured. Resistance can be shown in meter displays and can also be plotted versus time in a graph, creating an Ohm scope.

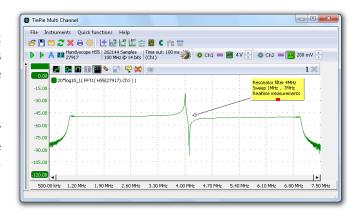
#### Protocol analyzer



The various serial protocol analyzers of the Handyscope HS5 can be used to analyze and debug serial data buses. The data is displayed in an elaborate table with information on the serial data. Locating "wrong" data packets has become very easy. For each developer or service technician this is a welcome option. Protocol analyzers for CAN bus data, I<sup>2</sup>C communication and various other serial data communications are available.

To the left, decoded CAN bus messages are shown.

#### Very fast 20 MSamples per second streaming Data logger


When unlimited deep memory is required, it is possi-Handyscope HS5 is capable of streaming up to 20 mil-

lion samples per second, at 14 bit resolution. Using ble to stream the measured data directly to disk. The streaming measuring, difficult problems can be measured easily and traced back and analyzed.

### Handyscope HS5, an unbeatable High Resolution USB oscilloscope

# Scope and AWG synchronisation

With both the High Resolution USB oscilloscope and the USB arbitrary waveform generator in one unit, it is easy to perform a synchronized measurement. It is e.g. possible to perform a sweep and directly measure the frequency spectrum. In the shown measurement a sweep from 1 MHz to 7 MHz is generated and injected in a resonance filter of 4 MHz, the output is directly measured. This is a real time measurement. When the resonance filter is heated, the drop in resonance frequency is immediately visible.



# Fast to work with the Handyscope HS5

By using set files and reference signals, a complex measurement can be performed quickly. A set file contains the setup of the Handyscope HS5. When a setup is made for a specific measurement, it can be saved on hard disk. A next time, this set file (with possible corresponding reference signals) can be read and the measurement can be performed again immediately and compared to the reference signal. Multiple reference signals can be in-

cluded in a set file. Exchanging measured signals with colleagues who have a Handyscope HS5 is very easy. A lot of time can be saved by immediately using the correct instrument setup and reference signals. Troubleshooting becomes very effective. By storing all set files on a computer, a historical overview of signals becomes easy and unlimited available.

#### Ease of use



The convenient toolbars offer many ways to control the Handyscope HS5. The toolbars are fully customizable to meet the user's demands. The size of the toolbar buttons can be changed to simplify touch screen control. There are toolbars available for common operations like

saving or recalling measurements, for each opened instrument, for each channel and for the quick functions. Using quick functions, complex measurements can be performed immediately by a single click.

Create a new graph

Create an Yt oscilloscope

Create an XY oscilloscope

Create a spectrum analyzer

Create a data logger

Create a CAN Bus analyzer

Create an I<sup>2</sup>C analyzer

Create a serial analyzer

With the cursor measurements, individually for each graph, many signal properties can be determined.

The sample value at the left cursor

The sample value at the right cursor

The value difference between right and left cursor

The slope between the cursors

The maximum value between the cursors

 $ule{black}$  The minimum value between the cursors

The top-bottom value between the cursors

The RMS value between the cursors

The mean value between the cursors

 ${\overline {f O}}^2$  The variance of the values between the cursors

**The standard deviation of the values between the** 

The frequency of the signal between the cursors

The duty cycle of the signal between the cursors

The crest factor of the signal between the cursors

The rise time of the signal between the cursors

The fall time of the signal between the cursors

The dBm value of the signal between the cursors

# Sophisticated mathematics for in-depth signal analysis

The Multi Channel software for the Handyscope HS5 offers a large variety of mathematical operations like e.g. adding, subtracting, multiplying, dividing, integrating, differentiating, determining the square root, determining the logarithm, etc. These mathematical operations are available in the form of processing blocks and can be used to process the measured signals and reference signals.

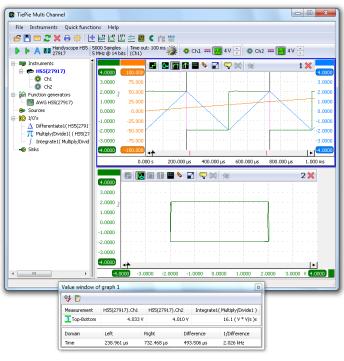
Besides the basic mathematical operations, there are also several processing blocks to perform other, more complex operations on the data, like determining minimum or maximum values, limiting to specified range, averaging, filtering, applying gain and offset, resampling etc.

Combining these mathematical processing blocks gives unrivaled possibilities in constructing complex mathematical operations to analyze your measurements thoroughly and obtain all the information you need from your data. The results of these operations can be displayed in one or more graphs, can be displayed in numeric displays, in tables and can be written to disk in various common file formats.

Apply gain and offset to a signal

Add or subtract signals

T Multiply or divide signals


√ Determine the square root of a signal.

 $|\mathcal{X}|$  Determine the absolute value of a signal

 $\Delta$  Differentiate a signal

✓ Integrate a signal

log Determine the logarithm of a signal



This measurement determines the area of an XY graph, using multiplying, integrating and differentiating I/O's. The area is indicated in the Value window:  $16 \text{ V}^2$ .

Apply a low pass filter to a signal

 $\overline{\mathcal{X}}$  Average a number of consecutive measurements

 $\sqrt{\phantom{a}}$  Limit the signal magnitude

Resample a signal to a different size

Collect streaming data blocks

Perform a Fast Fourier Transform on a signal

Determine the duty cycle of a signal

### **Education laboratory**

The many measurement examples and technical explanations that are given on the TiePie engineering website give the beginning user much information on how to use the Handyscope HS5 and in what areas it can be used. Basic information on measuring is given. A must for the beginning user and a source of inspiration for the experienced measurement specialist. www.tiepie.com/classroom

The Handyscope HS5 gives the user an instrument with a high accuracy both in amplitude (up to 16 bit)

and time and frequency (32 MSamples, 1 ppm). The integrated instruments make sure that most measurement problems can be solved and troubleshooting is limited to an absolute minimum. Are you working in research and development, manufacturing, service or education, the Handyscope HS5 is the instrument to deploy to visualize and analyze your signals. The Handyscope HS5 offers excellent and sophisticated measurement possibilities for an attractive budget for now and in the future.

# **Specifications**

To achieve rated accuracy, allow the instrument to settle for 20 minutes. When subjected to extreme temperatures, allow additional time for internal temperatures to stabilize. Because of temperature compensated calibration, the Handyscope HS5 will settle within specified accuracy regardless of the surrounding temperature.

# Oscilloscope

| Acquisition system       |                                               |                        |
|--------------------------|-----------------------------------------------|------------------------|
| Number of input channels | 2 analog                                      |                        |
| CH1, CH2                 | BNC                                           |                        |
| Maximum sampling rate    | Depending on model                            |                        |
| Model 540, model 530     | Measuring one channel                         | measuring two channels |
| 8/12 bit                 | 500 MS/s                                      | 200 MS/s               |
| 14 bit                   | 100 MS/s                                      | 100 MS/s               |
| 16 bit                   | 6.25 MS/s                                     | 6.25 MS/s              |
| Model 220                | Measuring one channel                         | measuring two channels |
| 8/12 bit                 | 200 MS/s                                      | 100 MS/s               |
| 14 bit                   | 50 MS/s                                       | 50 MS/s                |
| 16 bit                   | 3.125 MS/s                                    | 3.125 MS/s             |
| Model 110                | Measuring one channel                         | measuring two channels |
| 8/12 bit                 | 100 MS/s                                      | 50 MS/s                |
| 14 bit                   | 20 MS/s                                       | 20 MS/s                |
| 16 bit                   | 1.25 MS/s                                     | 1.25 MS/s              |
| Model 110                | Measuring one channel                         | measuring two channels |
| 8/12 bit                 | 50 MS/s                                       | 20 MS/s                |
| 14 bit                   | 10 MS/s                                       | 10 MS/s                |
| 16 bit                   | 625 kS/s                                      | 625 kS/s               |
| Maximum streaming rate   | Depending on model                            |                        |
| Model 540, model 530     | Measuring one channel                         | measuring two channels |
| 8 bit                    | 40 MS/s                                       | 20 MS/s                |
| 12/14 bit                | 20 MS/s                                       | 10 MS/s                |
| 16 bit                   | 6.25 MS/s                                     | 6.25 MS/s              |
| Model 220                | Measuring one channel                         | measuring two channels |
| 8 bit                    | 20 MS/s                                       | 10 MS/s                |
| 12/14 bit                | 10 MS/s                                       | 5 MS/s                 |
| 16 bit                   | 3.125 MS/s                                    | 3.125 MS/s             |
| Model 110                | Measuring one channel                         | measuring two channels |
| 8 bit                    | 10 MS/s                                       | 5 MS/s                 |
| 12/14 bit                | 5 MS/s                                        | 2 MS/s                 |
| 16 bit                   | 1.25 MS/s                                     | 1.25 MS/s              |
| Model 110                | Measuring one channel                         | measuring two channels |
| 8 bit                    | 4 MS/s                                        | 2 MS/s                 |
| 12/14 bit                | 2 MS/s                                        | 1 MS/s                 |
| 16 bit                   | 625 kS/s                                      | 625 kS/s               |
| Sampling source          |                                               |                        |
| Internal                 | TCX0                                          |                        |
| Accuracy                 | ±0.0001 %                                     |                        |
| Stability                | ±1 ppm over 0 °C to 5                         | 55 °C                  |
| Time base aging          | ±1 ppm per year                               |                        |
| External                 | LVDS, on auxilary conne                       | ectors                 |
| Input range              | 10 MHz                                        |                        |
| Memory                   |                                               |                        |
| Standard model           | 128 KiSamples per char                        |                        |
| XM option                | 32 MSamples per chann<br>64 MSamples when mea |                        |

| Single ended                                     |
|--------------------------------------------------|
| 8, 12, 14, 16 bit user selectable                |
| 0.25 % (0.1 % typical) of full scale $\pm$ 1 LSB |
| $\pm 200$ mV to $\pm 80$ V full scale            |
| AC/DC                                            |
| 1 MΩ / 25 pF                                     |
| 200 V (DC $+$ AC peak $<$ 10 kHz)                |
| 600~V~(DC+AC~peak<10~kHz)                        |
| Ch1 Ch2                                          |
| 250 MHz 100 MHz                                  |
| ±1.5 Hz                                          |
| Optionally available (option S)                  |
| 200 V (DC + AC peak <10 kHz)                     |
| Optionally available (option S)                  |
| 100 Ohm to 2 MOhm full scale                     |
| 3 %                                              |
| <5 ms                                            |
|                                                  |

| Trigger                        |                                                                                       |
|--------------------------------|---------------------------------------------------------------------------------------|
| System                         | Digital, 2 levels                                                                     |
| Source                         | CH1, CH2, digital external, OR, generator start, generator new period, generator stop |
| Trigger modes                  | Rising/falling/any edge, inside/outside window, enter/exit window, pulse width        |
| Level adjustment               | 0 to 100 % of full scale                                                              |
| Hysteresis adjustment          | 0 to 100 % of full scale                                                              |
| Resolution                     | 0.024 % (12 bits)/0.006 % (14/16 bits)                                                |
| Pre trigger                    | 0 to 32 MiSamples, 1 sample resolution                                                |
| Post trigger                   | 0 to 32 MiSamples, 1 sample resolution                                                |
| Digital external trigger       |                                                                                       |
| Input                          | Auxilary I/O connector                                                                |
| Range                          | 0 to 2.5 V (TTL)                                                                      |
| Coupling                       | DC                                                                                    |
| Jitter                         | depending on trigger source and sample frequency                                      |
| Source = channel               | $\leq 1$ sample                                                                       |
| Source = External or Generator |                                                                                       |
| Sample frequency = 500 MS/s    | ≤ 8 samples                                                                           |
| Sample frequency <500 MS/s     | ≤ 4 samples                                                                           |

| Multi instrument synchronization |                                       |
|----------------------------------|---------------------------------------|
| Maximum number of instruments    | Limited by number available USB ports |
| Synchronization accuracy         | 0 ppm                                 |
|                                  |                                       |
| Probes                           | HP-9250                               |
|                                  |                                       |

| Probes                           | HP-9250                             |                                                    |
|----------------------------------|-------------------------------------|----------------------------------------------------|
| Attenuation settings             | X1                                  | X10                                                |
| Bandwidth                        | 6 MHz                               | 250 MHz                                            |
| Rise time                        | 58 ns                               | 1.4 ns                                             |
| Input impedance                  | $1~{\sf M}\Omega$ (scope impedance) | 10 M $\Omega$ (incl. 1 M $\Omega$ scope impedance) |
| Input capacitance                | 47 pF + scope capacitance           | 17 pF                                              |
| Compensation range               | -                                   | 10 to 35 pF                                        |
| Working voltage (DC $+$ peak AC) | 300 V CAT I,<br>150 V CAT II        | 600 V CAT I,<br>300 V CAT II                       |



# **Arbitrary Waveform Generator**

| Signal characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depending on model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Model HS5-540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1~\mu$ Hz to 40 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Model HS5-530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 μHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model HS5-220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 μHz to 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model HS5-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 μHz to 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model HS5-055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 μHz to 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Amplitude flattness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relative to 1 kHz, 20 V <sub>pp</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±0.1 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| < 5 MHz<br>< 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±0.15 dB<br>±0.3 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| < 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.4 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| < 40 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spurious (non harmonic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TI db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -75 dB <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100 kHz to 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -70 dB <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 MHz to 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -60 dB <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10 MHz to 15 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -55 dB <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15 MHz to 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -45 dB <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20 MHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -35 dB <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30 MHz to 40 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -30 dB <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depending on model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Model HS5-540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1~\mu\mathrm{Hz}$ to 30 MHz, above 30 MHz not specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Model HS5-530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1~\mu\text{Hz}$ to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Model HS5-220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 μHz to 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model HS5-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 μHz to 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model HS5-055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 μHz to 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rise/fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Overshoot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Variable duty cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 % to 99.99 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Asymmetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0 % of period + 5 ns (@ 50 % duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Jitter (RMS)  Triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 50 ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depending on model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model HSh-540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 uHz to 30 MHz above 30 MHz not specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Model HS5-540  Model HS5-530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 μHz to 30 MHz, above 30 MHz not specified 1 μHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Model HS5-530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 μHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model HS5-530<br>Model HS5-220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 μHz to 30 MHz<br>1 μHz to 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Model HS5-530<br>Model HS5-220<br>Model HS5-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 μHz to 30 MHz<br>1 μHz to 20 MHz<br>1 μHz to 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Model HS5-530<br>Model HS5-220<br>Model HS5-110<br>Model HS5-055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 μHz to 30 MHz<br>1 μHz to 20 MHz<br>1 μHz to 10 MHz<br>1 μHz to 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Model HS5-530  Model HS5-220  Model HS5-110  Model HS5-055  Nonlinearity (of peak output)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1~\mu \rm Hz$ to 30 MHz $$1~\mu \rm Hz$ to 20 MHz $$1~\mu \rm Hz$ to 10 MHz $$1~\mu \rm Hz$ to 5 MHz $$<0.01~\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Model HS5-530  Model HS5-220  Model HS5-110  Model HS5-055  Nonlinearity (of peak output)  Symmetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1~\mu \rm Hz$ to 30 MHz $$1~\mu \rm Hz$ to 20 MHz $$1~\mu \rm Hz$ to 10 MHz $$1~\mu \rm Hz$ to 5 MHz $$<0.01~\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1~\mu \rm{Hz}~to~30~MHz\\ \\ 1~\mu \rm{Hz}~to~20~MHz\\ \\ 1~\mu \rm{Hz}~to~10~MHz\\ \\ 1~\mu \rm{Hz}~to~5~MHz\\ \\ < 0.01~\%\\ \\ 0~\%~to~100~\%,~0.1~\%~steps \end{array}$                                                                                                                                                                                                                                                                                                                                                                                           |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 1 \; \mu \rm{Hz} \; \rm{to} \; 30 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 20 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 10 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 5 \; \rm{MHz} \\ \\ < 0.01 \; \% \\ \\ 0 \; \% \; \rm{to} \; 100 \; \%, \; 0.1 \; \% \; \rm{steps} \\ \\ \\ 100 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 15 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 20 \; \rm{ns} \; \rm{to} \; 1 \; \rm{s} \\ \\ \end{array}$                                                                                                  |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1 \; \mu \rm{Hz} \; \rm{to} \; 30 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 20 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 10 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 5 \; \rm{MHz} \\ \\ < 0.01 \; \% \\ \\ 0 \; \% \; \rm{to} \; 100 \; \%, \; 0.1 \; \% \; \rm{steps} \\ \\ \\ 100 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 15 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ \end{array}$                                                                                                                                                |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1 \; \mu \rm{Hz} \; \rm{to} \; 30 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 20 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 10 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 5 \; \rm{MHz} \\ \\ < 0.01 \; \% \\ \\ 0 \; \% \; \rm{to} \; 100 \; \%, \; 0.1 \; \% \; \rm{steps} \\ \\ \\ 100 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 15 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 20 \; \rm{ns} \; \rm{to} \; 1 \; \rm{s} \\ \\ \end{array}$                                                                                                  |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1 \; \mu \rm{Hz} \; \rm{to} \; 30 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 20 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 10 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 5 \; \rm{MHz} \\ \\ < 0.01 \; \% \\ \\ 0 \; \% \; \rm{to} \; 100 \; \%, \; 0.1 \; \% \; \rm{steps} \\ \\ \\ 100 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 15 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 20 \; \rm{ns} \; \rm{to} \; 1 \; \rm{s} \\ \\ < 1 \; \% \\ \\ < 50 \; \rm{ps} \\ \\ \end{array}$                                                            |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical)                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 1 \; \mu \rm{Hz} \; \rm{to} \; 30 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 20 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 10 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 5 \; \rm{MHz} \\ \\ < 0.01 \; \% \\ \\ 0 \; \% \; \rm{to} \; 100 \; \%, \; 0.1 \; \% \; \rm{steps} \\ \\ \\ 100 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 15 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 20 \; \rm{ns} \; \rm{to} \; 1 \; \rm{s} \\ \\ < 1 \; \% \\ \end{array}$                                                                                     |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1 \; \mu \text{Hz} \; \text{to} \; 30 \; \text{MHz} \\ \\ 1 \; \mu \text{Hz} \; \text{to} \; 20 \; \text{MHz} \\ \\ 1 \; \mu \text{Hz} \; \text{to} \; 10 \; \text{MHz} \\ \\ 1 \; \mu \text{Hz} \; \text{to} \; 5 \; \text{MHz} \\ \\ < 0.01 \; \% \\ \\ 0 \; \% \; \text{to} \; 100 \; \%, \; 0.1 \; \% \; \text{steps} \\ \\ \hline 100 \; \text{ns} \; \text{to} \; 1000 \; \text{s} \\ \\ 15 \; \text{ns} \; \text{to} \; 1000 \; \text{s} \\ \\ 20 \; \text{ns} \; \text{to} \; 1 \; \text{s} \\ \\ < 1 \; \% \\ \\ < 50 \; \text{ps} \\ \\ \hline \end{array}$ |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1 \; \mu \rm{Hz} \; \rm{to} \; 30 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 20 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 10 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 5 \; \rm{MHz} \\ \\ < 0.01 \; \% \\ \\ 0 \; \% \; \rm{to} \; 100 \; \%, \; 0.1 \; \% \; \rm{steps} \\ \\ \\ 100 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 15 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 20 \; \rm{ns} \; \rm{to} \; 1 \; \rm{s} \\ \\ < 1 \; \% \\ \\ < 50 \; \rm{ps} \\ \\ \\ \end{array}$                                                         |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1 \; \mu \rm{Hz} \; \rm{to} \; 30 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 20 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 10 \; \rm{MHz} \\ \\ 1 \; \mu \rm{Hz} \; \rm{to} \; 5 \; \rm{MHz} \\ \\ < 0.01 \; \% \\ \\ 0 \; \% \; \rm{to} \; 100 \; \%, \; 0.1 \; \% \; \rm{steps} \\ \\ \\ 100 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 15 \; \rm{ns} \; \rm{to} \; 1000 \; \rm{s} \\ \\ 20 \; \rm{ns} \; \rm{to} \; 1 \; \rm{s} \\ \\ < 1 \; \% \\ \\ < 50 \; \rm{ps} \\ \\ \\ \\ \end{array}$                                                      |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-220                                                                                                                                                                                                                                                                                                                                                                   | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz                                                                                                                                                                                                                                                                                                                                                              |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-220 Model HS5-110                                                                                                                                                                                                                                                                                                                                                     | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz                                                                                                                                                                                                                                                                                                                                              |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055                                                                                                                                                                                                                                                                                                                                                     | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz                                                                                                                                                                                                                                                                                                                                                              |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length                                                                                                                                                                                                                                                                                                                             | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz                                                                                                                                                                                                                                                                                                                               |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model                                                                                                                                                                                                                                                                                                              | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz                                                                                                                                                                                                                                                                                                 |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model XM option                                                                                                                                                                                                                                                                                                    | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 to 256 KiSamples 1 to 64 MiSamples                                                                                                                                                                                                                                                                           |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model                                                                                                                                                                                                                                                                                                              | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz                                                                                                                                                                                                                                                                                                 |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-110 Model HS5-055 Waveform pattern length Standard model XM option Sampling rate                                                                                                                                                                                                                                                                        | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 to 256 KiSamples 1 to 64 MiSamples Depending on model                                                                                                                                                                                                                                                        |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model XM option Sampling rate Model HS5-540, model HS5-530                                                                                                                                                                                                                                                         | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 to 256 KiSamples 1 to 64 MiSamples Depending on model 240 MS/s                                                                                                                                                                                                                                               |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model XM option Sampling rate Model HS5-540, model HS5-530 Model HS5-540, model HS5-530                                                                                                                                                                                                                            | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 to 256 KiSamples 1 to 64 MiSamples Depending on model 240 MS/s 200 MS/s                                                                                                                                                                                                                                      |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model XM option Sampling rate Model HS5-540, model HS5-530 Model HS5-520 Model HS5-520 Model HS5-520 Model HS5-110                                                | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 to 256 KiSamples 1 to 64 MiSamples Depending on model 240 MS/s 200 MS/s 100 MS/s                                                                                                                                                                                                              |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model XM option Sampling rate Model HS5-540, model HS5-530 Model HS5-520 Model HS5-110 Model HS5-110 Model HS5-055                                                | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 10 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 to 44 MiSamples Depending on model 240 MS/s 200 MS/s 100 MS/s                                                                                                                                                                                                                  |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model XM option Sampling rate Model HS5-540, model HS5-530 Model HS5-520 Model HS5-5110 Model HS5-055 Rise/fall time                                              | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 5 MHz 1 to 4 MiSamples 1 to 64 MiSamples Depending on model 240 MS/s 200 MS/s 100 MS/s 50 MS/s < 8 ns                                                                                                                                                                                   |
| Model HS5-530 Model HS5-220 Model HS5-110 Model HS5-055 Nonlinearity (of peak output) Symmetry Pulse Period Pulse width Variable edge time Overshoot Jitter (RMS) Noise Bandwidth (typical) Arbitrary Frequency range Model HS5-540, model HS5-530 Model HS5-110 Model HS5-055 Waveform pattern length Standard model XM option Sampling rate Model HS5-540, model HS5-530 Model HS5-5110 Model HS5-055 Rise/fall time Nonlinearity (of peak output) | 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz < 0.01 % 0 % to 100 %, 0.1 % steps  100 ns to 1000 s 15 ns to 1000 s 20 ns to 1 s < 1 % < 50 ps  30 MHz  Depending on model 1 μHz to 30 MHz 1 μHz to 20 MHz 1 μHz to 10 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 μHz to 5 MHz 1 το 4 MiSamples 1 to 64 MiSamples Depending on model 240 MS/s 200 MS/s 100 MS/s < 8 ns < 0.01 %                                                                                                                                                                                                |

| Waveforms                               |                                                                             |
|-----------------------------------------|-----------------------------------------------------------------------------|
| Standard                                | Sine, square, triangle, pulse, noise, DC                                    |
| Built-in arbitrary                      | Exponential rise and fall, $sin(x)/x$ , cardiac, haver-                     |
|                                         | sine, lorentz, d-lorentz                                                    |
| System characteristics                  |                                                                             |
| System                                  | Constant Data Size                                                          |
| Output channel                          | 1 analog, BNC                                                               |
| DAC resolution                          | 14 bit                                                                      |
| Output range                            | -12 to 12 V (open circuit)                                                  |
| Amplitude                               |                                                                             |
| Range                                   | 0.12 V, 1.2 V, 12 V (open circuit)                                          |
| Resolution                              | 12 bit 0.4 % of range                                                       |
| Accuracy DC offset                      | 0.4 /6 of falige                                                            |
| Range                                   | -12 to 12 V (open circuit)                                                  |
| Resolution                              | 12 bit                                                                      |
| Accuracy                                | 0.4 % of range                                                              |
| Noise level                             |                                                                             |
| 0.12 V                                  | 900 μV <sub>RMS</sub>                                                       |
| 1.2 V                                   | 1.3 mV <sub>RMS</sub>                                                       |
| 12 V                                    | 1.5 mV <sub>RMS</sub>                                                       |
| Coupling Impedance                      | DC<br>50 Ω                                                                  |
| Overload protection                     | Output turns off automatically when overload is                             |
| ,                                       | applied. Instrument will tolerate a short circuit to                        |
| Memory                                  | ground indefinitely.                                                        |
| Standard model                          | 256 KiSamples                                                               |
| XM option                               | 64 MiSamples                                                                |
| Operating modes                         | Continuous, triggered, gated                                                |
| Sampling rate                           | Depending on model                                                          |
| Model HS5-540, model HS5-530            | 240 MS/s                                                                    |
| Model HS5-220                           | 200 MS/s                                                                    |
| Model HS5-110                           | 100 MS/s                                                                    |
| Model HS5-055 Sampling source           | 50 MS/s Internal TCXO                                                       |
| Accuracy                                | 0.0001 %                                                                    |
| Stability                               | ±1 ppm over 0 °C to +55 °C                                                  |
| Time base aging                         | $\pm 1$ ppm per year                                                        |
|                                         |                                                                             |
| Burst                                   |                                                                             |
| Waveforms Count                         | Sine, square, triangle, noise, arbitrary                                    |
| Trigger                                 | 1 to 65535  Software, external                                              |
| Trigger                                 | Software, external                                                          |
| Sweep                                   | only available on models with option XM                                     |
| Waveforms                               | Sine, square, triangle, noise, arbitrary                                    |
| Туре                                    | Linear, logarithmic                                                         |
| Direction                               | Up, down                                                                    |
| Trigger                                 | Software, external                                                          |
| Modulation                              |                                                                             |
| AM                                      |                                                                             |
| Carrier waveforms                       | Sine, square, triangle, arbitrary                                           |
| Modulating waveforms                    | Sine, square, triangle, noise, arbitrary                                    |
| Modulating frequency                    | 2 mHz to 20 MHz                                                             |
| Depth                                   | 0.0 % to 100 %                                                              |
| Source                                  | Internal                                                                    |
| FM .                                    | C:                                                                          |
| Carrier waveforms  Modulating waveforms | Sine, square, triangle, arbitrary  Sine, square, triangle, noise, arbitrary |
| Modulating frequency                    | 2 mHz to 20 MHz                                                             |
| Peak deviation                          | DC to 20 MHz                                                                |
| Source                                  | Internal                                                                    |
| FSK                                     |                                                                             |
| Carrier waveforms                       | Sine, square, triangle, arbitrary                                           |
| Modulating waveforms                    | 50 % duty cycle square                                                      |
| Modulating frequency                    | 2 mHz to 20 MHz                                                             |
| Peak deviation                          | 1 μHz to 20 MHz                                                             |
| Source                                  | Internal                                                                    |

# Handyscope HS5, an unbeatable High Resolution USB oscilloscope

#### **General**

| Power                       |                                          |
|-----------------------------|------------------------------------------|
| Power                       | From USB or external input               |
| Consumption                 | 5 V <sub>DC</sub> , 2000 mA max          |
| External power              | From second USB port or power adapter    |
|                             |                                          |
| Power adapter               | External                                 |
| Input                       | 110 to 240 V <sub>AC</sub> , 50 to 60 Hz |
|                             | 0.85 A Max., 50 VA to 80 VA              |
| Output                      | 5.5 V <sub>DC</sub> , 2.0 A              |
| Dimension                   |                                          |
| Height                      | 30 mm / 1.2"                             |
| Width                       | 45 mm / 1.8"                             |
| Length                      | 75 mm / 3"                               |
| Replaceable mains plugs for | EU, US, AU, UK                           |
| Order number                | TP-UE15WCP1-055200SPA                    |



# 1/O connectors Front



| Ξ | CH1, CH2 | BNC |
|---|----------|-----|
|   | AWG      | BNC |
| _ |          |     |

Rear



| USB                             | Fixed cable with USB type A plug, 1.8 m |
|---------------------------------|-----------------------------------------|
| Extension connector             | D-sub 9 pins female                     |
| Power                           | 3.5 mm power socket                     |
| Auxiliary I/O connectors 1 to 2 | HDMI type C socket                      |

| Physical        |                  |
|-----------------|------------------|
| Height          | 25 mm / 1.0"     |
| Length          | 170 mm / 6.7"    |
| Width           | 140 mm / 5.2"    |
| Weight          | 430 g / 15 ounce |
| USB cord length | 1.8 m / 70"      |

| Interface |                                 |
|-----------|---------------------------------|
| Interface | USB 2.0 High Speed (480 Mbit/s) |

| System requirements |                                           |  |
|---------------------|-------------------------------------------|--|
| PC I/O connection   | USB 1.1, USB 2.0 or newer                 |  |
| Operating System    | Windows 2000/XP/Vista/7/8, 32 and 64 bits |  |

| Environmental conditions |                          |  |  |  |  |
|--------------------------|--------------------------|--|--|--|--|
| Operating                |                          |  |  |  |  |
| Ambient temperature      | 0 to 55 °C               |  |  |  |  |
| Relative humidity        | 5 to 90 % non condensing |  |  |  |  |
| Storage                  |                          |  |  |  |  |
| Ambient temperature      | -20 to 70 °C             |  |  |  |  |
| Relative humidity        | 5 to 95 % non condensing |  |  |  |  |

| Certifications and Compliances |     |
|--------------------------------|-----|
| CE mark compliance             | Yes |
| RoHS                           | Yes |
| EN 55011:2009/A1:2010          | Yes |
| EN 55022:2006/A1:2007          | Yes |
| EN 61000-6-1:2007              | Yes |
| EN 61000-6-3:2007              | Yes |

| Three year standard, five years optional, covering all parts and labor, excluding probes |
|------------------------------------------------------------------------------------------|
|                                                                                          |

| Accessories included |                                                                            |  |
|----------------------|----------------------------------------------------------------------------|--|
| Instrument           | Handyscope HS5 : HS5-xxx-xx (see below)                                    |  |
| Probes               | 2 x 1:1 / 1:10 : HP-9250                                                   |  |
| Accessories          | Power adapter : TP-UE15WCP1-055200SPA<br>USB power cable : TP-USB-PWR-P3.5 |  |
| Software             | For Windows 2000/XP/Vista/7/8                                              |  |
| Drivers              | For Windows 2000/XP/Vista/7/8                                              |  |
| Manual               | Instrument manual and software user's manual                               |  |



#### Customer service

TiePie engineering instruments are designed, manufactured and tested to provide high reliability. In the unlikely event you experience difficulties, the TiePie engineering instruments are fully warranted for three years. This warranty includes:

- No charge for return shipping
- Long-term 7-year support
- Upgrade to the latest software at no charge

| Ordering information                           |            |  |  |  |
|------------------------------------------------|------------|--|--|--|
| Handyscope HS5 Model                           | Order code |  |  |  |
| 500 MS/s, 40 MHz AWG, 128 KiS, 3 year warranty | HS5-540    |  |  |  |
| 500 MS/s, 30 MHz AWG, 128 KiS, 3 year warranty | HS5-530    |  |  |  |
| 200 MS/s, 20 MHz AWG, 128 KiS, 3 year warranty | HS5-220    |  |  |  |
| 100 MS/s, 10 MHz AWG, 128 KiS, 3 year warranty | HS5-110    |  |  |  |
| 50 MS/s, 5 MHz AWG, 128 KiS, 3 year warranty   | HS5-055    |  |  |  |

Available options for the Handyscope HS5 are:

- XM: With the extended memory option, 32 MiSamples memory per channel is available. Add XM to the order code.
- available. Add XM to the order code.

  S: With the SureConnect option, connection test and resistance measurement are available on all channels. Add S to the order code.
- W5: With the extended warranty option, warranty is five years on parts and labor. Add -W5 to the order code.



TiePie engineering Koperslagersstraat 37 8601 WL Sneek The Netherlands Tel.: +31 515 415 416 Fax: +31 515 418 819 E-mail: sales@tiepie.nl

www.tiepie.nl

This information is subject to change without notice. Copyright © 2014 TiePie engineering. All rights reserved. Revision 1.4, September 20, 2014.